COT 6405 Introduction to Theory of
Algorithms

Topic 11. Order Statistics

10/12/2016



Order statistic

e The j-th order statistic in a set of n elements is
the i-th smallest element

— The minimum is thus the 1%t order statistic
— The maximum is the n-th order statistic

— The median is the n/2 order statistic

* If nis even, we have 2 medians: lower median n/2 and
upper median n/2+1

* By our convention, “median” normally refers to the
lower median



How to calculate

* How can we calculate order statistics?

 What is the running time?
— Simple method: Sort first, e.g., Heapsort O(n Ig n)
— then return the i-th element



Find the minimum

* How many comparisons are needed to find
the minimum element in a set? Or the
maximum?

MINIMUM(A)
min=A[1]
for i=2 to A.length
if min > Al[i]
min = Ali]

return min



Find both the minimum & the
maximum

e We can find the minimum with n-1
comparisons

e We can find the maximum with n-1
comparisons

e So we can find both the minimum and the
maximum with 2(n-1) comparisons



Can we reduce the cost?

e Can we find the minimum and maximum with
less than twice the cost, 2(n-1) ?

* Yes: walk through elements by pairs
— Compare each element in pair to the other

— Compare the larger one to maximum, the smaller
one to minimum

* Total cost: 3 comparisons per 2 elements =
O(3n/2)



Finding order statistics:
The Selection Problem

A more interesting problem is the selection
problem

— finding the i-th smallest element of a set

A naive way is to sort the set

— Running time takes O(nlgn)

We will study a practical randomized algorithm
with O(n) expected running time

We will then study an algorithm with O(n) worst-case
running time



Randomized Selection

* Key idea: use partition() from Quicksort
— But, only need to examine one subarray
— This savings shows up in running time: O(n)

* We will again use a randomized partition

g = RANDOMIZED-PARTITION(A, p, r)

RANDOMIZED-PARTITION(A, p, r)
i <RANDOM(p, r)
exchange A[r] <> Ali ]
return PARTITION(A, p, r)




Randomized Selection

RandomizedSelect (A, p, r, 1)
if (p == r) then return Alp]:;
q = RandomizedPartition(A, p, r)
k=g-p+ 1;
if (i == k) then return A[q];
if (1 < k) then
return RandomizedSelect (A, p, g-1, ?);

else
return RandomizedSelect (A,g+l,r, ?? );

< k >




Randomized Selection

RandomizedSelect (A, p, r, 1)
if (p == r) then return Alp]:;
q = RandomizedPartition(A, p, r)
k=g-p+ 1;
if (i == k) then return A[q];
if (1 < k) then
return RandomizedSelect (A, p, g-1, 1i);

else

return RandomizedSelect(A,gqg+l,r, i-k);

< k >

S I

p G r

10



Average case analysis

* We can upper-bound the time needed for the
recursive call by the time needed for the
recursive call on the largest possible input

* |n other words, to obtain an upper bound, we
assume that the i-th element is always on the
side of the partition with the greater number
of elements



Analyzing Randomized-Select()

* Worst case: partition always 0:n-1
—T(n) < T(n-1) + O(n) = O(n?)
— No better than sorting!

* “Best” case: suppose a 9:1 partition
— T(n) < T(9n/10) + O(n) = O(n) (why?)
— Master Theorem, case 3
— Better than sorting!



Average case analysis (cont’d)

* We have n ways to partition, 1/n to choose k

IN

%kz”;T(max(k_l,n_k))m(n)

2 n-1
{ N k:%ﬂ

T(n)

IN
|

—
~—

~
S~

+

@,
—_

-]
—~—

—

10/12/2016 13



Average case analysis (cont’d)

* Ifniseven, T(|n/2]) up to T(n-1) appears exactly
twice.
— E.g., n=4, T(n) < 1/4(T(max(0, 3)) + T(max(1, 2)) +
T(max(2, 1)) + T(max(3, 0) ) =2/4(T(3)+T(2))
 If nis odd, all these terms appear twice and T(|n/2])
appears once
— E.g.,,n=5, T(n) < 1/5(T(max(0, 4)) + T(max(1, 3)) +

T(max(2, 2))|+ T(max(3, 1)) + T(max(4, 0)) )
=2/5(T(4)+T(3))+1/5(T(2)) < 2/5(T(4)+T(3)+T(2))

T(n) < %an;T(max(k—l,n—k))JrO(n)

< 2 S 7(k)+0(n)

N Ini2]




Average case analysis (cont’d)

k-1 if k>[n/2]
n-k if k<[n/2]

rax(c-10-K) =

T(n) < lz T(max(k —1,n—k)) + 0(n) [ n is even J
n

k=1
n-1

_ % > T(max(e = 1,n = k) + 0(n)

n—1
2
T(k—1)+0(mn) <= z T(k) + 0(n)
k=[n/2] nk=[n/2j



Average case analysis (cont’d)

k-1 if k>[n/2]
n-k if k<[n/2

rax(c-10-K) =

T(n) < lz T(max(k—1,n—k)) + 0(n) n is odd
=

n-1
— % z T(max(k—1,n—k)) + %T(max([n/ZJ, In/2])) + O(n)

k=|n/2|+1



Average case analysis (cont’d)

T(n) < %Z T(max(k —1,n—k)) + 0(n) nis odd
k=1

n-—1
=2 N Tlmaxt—1,n - 1)+ T(max(ln/21, In/21)) + 0(n)

k=|n/2]+1

2

=SS0y, TR =D+ 1 (|3]) + o)

n k=2_

= 2y 2 T+ ([5]) + o)

n k=_2_

< 23Rzt TR +=T(n—1) + 0(n)

n

2 _
= Ykzins2) T(k) + 0 (n)




Average case analysis (cont’d)

e Use substitution method: Assume T(k) < ck,
for sufficiently large c

e T(n) < %ZZ;EEI ck + an
= Z(XRtk - X T k) +an

c (n—-1n (E“UE‘
2

=2

- » ) +an



Average case analysis (cont’d)

. 2¢ ,(n—-1)n (E‘—l)g‘
T(n)Sn( > > ) +an
< 2¢C ((n—l)n (5—2)(5—1)) +an
n 2
, n? 3n
__2c n*-n VRS
= n( > > ) +an
c ,3n?



Average case analysis (cont’d)

c .3n°% n

e TN —-(——-=—2) +an
(n) n( 4 2 ) @ long as we chooseh

3n 1 2 constant ¢ so that c/4-
=C(—+———) + :
C( 4 T 2 n) an a>0. l.e., c>4a,
3cn . we can divide both
< — 5 an sides by c/4-a, giving
C
cn C > 2
=cn—(7———0n) >t ==

—a c—4i/

€

4

[Ora——
4 4 2

2




Worst-Case Linear-Time Selection

 Randomized selection algorithm works well in
practice

* We now examine a selection algorithm whose
running time is O(n) in the worst case.



Worst-Case Linear-Time Selection

 The worst-case happens when a 0:n-1 split is
generated. Thus, to achieve O(n) running time,
we guarantee a good split upon partitioning
the array.

 Basicidea:

— Generate a good partitioning element



Selection algorithm

Divide n elements into groups of 5
Find median of each group (How? How long?)

Use Select() recursively to find median x of the n/5 |
medians

Partition the n elements around x. Let k = rank(x)
if (i == k) then return x
if (i < k) then

use Select() recursively to find i-th smallest

element in the low side of the partition
else

(i > k) use Select() recursively to find (i-k)-th
smallest element in the high side of the partition






Running time analysis

* At least half of the [n/5] groups contribute at
least 3 elements that are greater than x,

— except for the one group that has fewer than 5
elements, and the one group containing x itself

25



Running time analysis (Cont’d)

* The number of elements greater than x is at

3([ H] 2)>2 -6

e Similarly, at least > 1—0 - 6 elements are less than
X. Thus, in the worst case, step 5 calls SELECT
. n
recursively on at most o7 6 elements.



LA A

Running time analysis (cont’d)

Step 1 takes O(n) time

Step 2 consists of O(n) calls of insertion sort on sets of size
O(1)

Step 3 takes time T(|n/5])
Step 4 takes O(n) time
Step 5 takes time at most T(7n/10 + 6)

Divide n elements into groups of 5

Find median of each group (How? How long?)

Use Select() recursively to find median x of the[ n/5 | medians
Partition the n elements around x. Let k = rank(x)

if (i == k) then return x

if (i <k) then

use Select() recursively to find j-th smallest element in the low side of the partition
else

(i > k) use Select() recursively to find (i-k)-th smallest element in the high side of the partition



Running time analysis (cont’d)

We can therefore obtain the recurrence
T(n) < T([Jn/5]) + T(7n/10 + 6) + O(n)

Assume T(k) < ck for k < n, use the
substitution method

T(n) < c[n/5] + c(7n/10 + 6) + an
<cn/5+c+7cn/10 + 6¢C + an
=9¢cn/10 + 7c +an
=cn + (-cn/10 + 7c + an)



Running time analysis (cont’d)

* T(n) <cn+(-cn/10 + 7c + an)
e Which is at most cn if

— -cn/10+7c+an<0
— c=10a(n/(n—70)) whenn>70



Linear-Time Median Selection

* Given a “black box” O(n) median algorithm,
what can we do?

— i-th order statistic:
* Find median x
 Partition input around x
o if (i <(n+1)/2) recursively find i-th element of first half
e else find (i - (n+1)/2)-th element in second half
* T(n) =T(n/2) + O(n) = O(n) (why?)



Worst-case quicksort

* Worst-case O(n Ig n) quicksort
— Find median x and partition around it

— Recursively quicksort two halves
—T(n) = 2T(n/2) + O(n) = O(n Ig n)



Summary

Selection() does not require assumptions on
the input

— Do not need to sort the whole array, then pick i-th
element

— Counting/Radix/Bucket sort assume certain inputs



