
COT 6405 Introduction to Theory of
Algorithms

Topic 11. Order Statistics

10/12/2016 1

Order statistic

• The i-th order statistic in a set of n elements is
the i-th smallest element

– The minimum is thus the 1st order statistic

– The maximum is the n-th order statistic

– The median is the n/2 order statistic

• If n is even, we have 2 medians: lower median n/2 and
upper median n/2+1

• By our convention, “median” normally refers to the
lower median

2

How to calculate

• How can we calculate order statistics?

• What is the running time?

– Simple method: Sort first, e.g., Heapsort O(n lg n)

– then return the i-th element

10/12/2016 3

Find the minimum

• How many comparisons are needed to find
the minimum element in a set? Or the
maximum?

MINIMUM(A)

min=A[1]

for i=2 to A.length

if min > A[i]

min = A[i]

return min

4

Find both the minimum & the
maximum

• We can find the minimum with n-1
comparisons

• We can find the maximum with n-1
comparisons

• So we can find both the minimum and the
maximum with 2(n-1) comparisons

10/12/2016 5

Can we reduce the cost?

• Can we find the minimum and maximum with
less than twice the cost, 2(n-1) ?

• Yes: walk through elements by pairs

– Compare each element in pair to the other

– Compare the larger one to maximum, the smaller
one to minimum

• Total cost: 3 comparisons per 2 elements =
O(3n/2)

10/12/2016 6

Finding order statistics:
The Selection Problem

• A more interesting problem is the selection
problem

– finding the i-th smallest element of a set

• A naïve way is to sort the set

– Running time takes O(nlgn)

• We will study a practical randomized algorithm
with O(n) expected running time

• We will then study an algorithm with O(n) worst-case
running time

7

Randomized Selection

• Key idea: use partition() from Quicksort

– But, only need to examine one subarray

– This savings shows up in running time: O(n)

• We will again use a randomized partition

q = RANDOMIZED-PARTITION(A, p, r)

RANDOMIZED-PARTITION(A, p, r)

i ←RANDOM(p, r)

exchange A[r] ↔ A[i]

return PARTITION(A, p, r)

qp r
8

Randomized Selection

RandomizedSelect(A, p, r, i)

if (p == r) then return A[p];

q = RandomizedPartition(A, p, r)

k = q - p + 1;

if (i == k) then return A[q];

if (i < k) then

return RandomizedSelect(A, p, q-1, ?);

else

return RandomizedSelect(A,q+1,r, ??);

k

9

qp r

Randomized Selection

RandomizedSelect(A, p, r, i)

if (p == r) then return A[p];

q = RandomizedPartition(A, p, r)

k = q - p + 1;

if (i == k) then return A[q];

if (i < k) then

return RandomizedSelect(A, p, q-1, i);

else

return RandomizedSelect(A,q+1,r, i-k);

k

10

qp r

Average case analysis

• We can upper-bound the time needed for the
recursive call by the time needed for the
recursive call on the largest possible input

• In other words, to obtain an upper bound, we
assume that the i-th element is always on the
side of the partition with the greater number
of elements

10/12/2016 11

Analyzing Randomized-Select()

• Worst case: partition always 0:n-1

– T(n) ≤ T(n-1) + O(n) = O(n2)

– No better than sorting!

• “Best” case: suppose a 9:1 partition

– T(n) ≤ T(9n/10) + O(n) = O(n) (why?)

– Master Theorem, case 3

– Better than sorting!

10/12/2016 12

Average case analysis (cont’d)

• We have n ways to partition, 1/n to choose k

10/12/2016 13

      

   
 














1

2/

1

2

,1max
1

n

nk

n

k

nOkT
n

nOknkT
n

nT

Why?

Average case analysis (cont’d)

• If n is even, T(𝑛/2) up to T(n-1) appears exactly
twice.

– E.g., n = 4, T(n) ≤ 1/4(T(max(0, 3)) + T(max(1, 2)) +
T(max(2, 1)) + T(max(3, 0)) =2/4(T(3)+T(2))

• If n is odd, all these terms appear twice and T(𝑛/2)
appears once

– E.g., n = 5, T(n) ≤ 1/5(T(max(0, 4)) + T(max(1, 3)) +
T(max(2, 2)) + T(max(3, 1)) + T(max(4, 0)))
=2/5(T(4)+T(3))+1/5(T(2)) < 2/5(T(4)+T(3)+T(2))

10/12/2016 14

      

   
 














1

2/

1

2

,1max
1

n

nk

n

k

nOkT
n

nOknkT
n

nT

Average case analysis (cont’d)

    

 2/

2/1
,1max

nkif

nkif

kn

k
knk














10/12/2016 15

𝑇 𝑛 ≤
1

𝑛
෍

𝑘=1

𝑛

𝑇 max 𝑘 − 1, 𝑛 − 𝑘 + 𝑂 𝑛

=
2

𝑛
෍

𝑘= 𝑛/2

𝑛−1

𝑇 max 𝑘 − 1, 𝑛 − 𝑘 + 𝑂 𝑛

=
2

𝑛
෍

𝑘= 𝑛/2

𝑛−1

𝑇 𝑘 − 1 + 𝑂 𝑛 ≤
2

𝑛
෍

𝑘= 𝑛/2

𝑛−1

𝑇 𝑘 + 𝑂 𝑛

n is even

Average case analysis (cont’d)

    

 2/

2/1
,1max

nkif

nkif

kn

k
knk














10/12/2016 16

𝑇 𝑛 ≤
1

𝑛
෍

𝑘=1

𝑛

𝑇 max 𝑘 − 1, 𝑛 − 𝑘 + 𝑂 𝑛

=
2

𝑛
෍

𝑘= 𝑛/2 +1

𝑛−1

𝑇 max 𝑘 − 1, 𝑛 − 𝑘 +
1

𝑛
𝑇 max(𝑛/2 , 𝑛/2) + 𝑂 𝑛

n is odd

Average case analysis (cont’d)

10/12/2016 17

𝑇 𝑛 ≤
1

𝑛
෍

𝑘=1

𝑛

𝑇 max 𝑘 − 1, 𝑛 − 𝑘 + 𝑂 𝑛

=
2

𝑛
෍

𝑘= 𝑛/2 +1

𝑛−1

𝑇 max 𝑘 − 1, 𝑛 − 𝑘 +
1

𝑛
𝑇 max(𝑛/2 , 𝑛/2) + 𝑂 𝑛

=
2

𝑛
σ
𝑘=

𝑛

2
+1

𝑛−1 𝑇 𝑘 − 1 +
1

𝑛
𝑇

𝑛

2
+ 𝑂 𝑛

=
2

𝑛
σ
𝑘=

𝑛

2

𝑛−2 𝑇 𝑘 +
1

𝑛
𝑇

𝑛

2
+ 𝑂 𝑛

≤
2

𝑛
σ𝑘= 𝑛/2
𝑛−2 𝑇 𝑘 +

2

𝑛
𝑇(𝑛 − 1) + 𝑂 𝑛

=
2

𝑛
σ𝑘= 𝑛/2
𝑛−1 𝑇 𝑘 + 𝑂 𝑛

n is odd

Average case analysis (cont’d)

• Use substitution method: Assume T(k)  ck,
for sufficiently large c

• 𝑇 𝑛 ≤
2

𝑛
σ
𝑘=

𝑛

2

𝑛−1 𝑐𝑘 + 𝑎𝑛

=
2𝑐

𝑛
(σ𝑘=1

𝑛−1𝑘 − σ𝑘=1
𝑛/2 −1

𝑘) + an

=
2𝑐

𝑛
(
𝑛−1 𝑛

2
−

(
𝑛

2
−1)

𝑛

2

2
) + an

10/12/2016 18

Average case analysis (cont’d)

• T(n) ≤
2𝑐

𝑛
(
𝑛−1 𝑛

2
−

(
𝑛

2
−1)

𝑛

2

2
) + an

≤
2𝑐

𝑛
(
𝑛−1 𝑛

2
−

(
𝑛

2
−2)(

𝑛

2
−1)

2
) + an

=
2𝑐

𝑛
(
𝑛2−𝑛

2
−

𝑛2

4
−
3𝑛

2
+2

2
) + an

=
𝑐

𝑛
(
3𝑛2

4
+

𝑛

2
− 2) + an

10/12/2016 19

Average case analysis (cont’d)

• T(n) ≤
𝑐

𝑛
(
3𝑛2

4
−

𝑛

2
− 2) + an

=𝑐(
3𝑛

4
+

1

2
−

2

𝑛
) + an

≤
3𝑐𝑛

4
+

𝑐

2
+an

= cn – (
𝑐𝑛

4
−

𝑐

2
−an)

≤ 𝑐𝑛
𝑐𝑛

4
−

𝑐

2
−an ≥ 0 − > 𝑛(

𝑐

4
−a) ≥

𝑐

2

10/12/2016 20

As long as we choose a

constant c so that c/4-

a>0. i.e., c>4a,

we can divide both

sides by c/4-a, giving

𝑛 ≥

𝑐
2

𝑐
4
− 𝑎

=
2𝑐

𝑐 − 4𝑎

Worst-Case Linear-Time Selection

• Randomized selection algorithm works well in
practice

• We now examine a selection algorithm whose
running time is O(n) in the worst case.

10/12/2016 21

Worst-Case Linear-Time Selection

• The worst-case happens when a 0:n-1 split is
generated. Thus, to achieve O(n) running time,
we guarantee a good split upon partitioning
the array.

• Basic idea:

– Generate a good partitioning element

10/12/2016 22

Selection algorithm
1. Divide n elements into groups of 5

2. Find median of each group (How? How long?)

3. Use Select() recursively to find median x of the n/5
medians

4. Partition the n elements around x. Let k = rank(x)

5. if (i == k) then return x

if (i < k) then

use Select() recursively to find i-th smallest
element in the low side of the partition

else

(i > k) use Select() recursively to find (i-k)-th
smallest element in the high side of the partition

23

Example

10/12/2016 24

Running time analysis

• At least half of the 𝑛/5 groups contribute at
least 3 elements that are greater than x,

– except for the one group that has fewer than 5
elements, and the one group containing x itself

25

Running time analysis (Cont’d)

• The number of elements greater than x is at
least

3(
1

2

𝑛

5
-2) ≥

3𝑛

10
- 6

• Similarly, at least
3𝑛

10
- 6 elements are less than

x. Thus, in the worst case, step 5 calls SELECT

recursively on at most
7𝑛

10
+ 6 elements.

10/12/2016 26

Running time analysis (cont’d)

• Step 1 takes O(n) time

• Step 2 consists of O(n) calls of insertion sort on sets of size
O(1)

• Step 3 takes time T(𝑛/5)

• Step 4 takes O(n) time

• Step 5 takes time at most T(7n/10 + 6)

10/12/2016 27

Running time analysis (cont’d)

• We can therefore obtain the recurrence

• T(n) ≤ T(𝑛/5) + T(7n/10 + 6) + O(n)

• Assume T(k) ≤ ck for k < n, use the
substitution method

• T(n) ≤ c 𝑛/5 + c(7n/10 + 6) + an

≤ cn/5 + c + 7cn/10 + 6c + an

= 9cn/10 + 7c +an

= cn + (-cn/10 + 7c + an)

10/12/2016 28

Running time analysis (cont’d)

• T(n) ≤ cn + (-cn/10 + 7c + an)

• Which is at most cn if

– -cn/10 + 7c + an ≤ 0

– c ≥ 10𝑎(𝑛/(𝑛 − 70)) when n > 70

10/12/2016 29

Linear-Time Median Selection

• Given a “black box” O(n) median algorithm,
what can we do?

– i-th order statistic:

• Find median x

• Partition input around x

• if (i  (n+1)/2) recursively find i-th element of first half

• else find (i - (n+1)/2)-th element in second half

• T(n) = T(n/2) + O(n) = O(n) (why?)

30

Worst-case quicksort

• Worst-case O(n lg n) quicksort

– Find median x and partition around it

– Recursively quicksort two halves

– T(n) = 2T(n/2) + O(n) = O(n lg n)

31

Summary

• Selection() does not require assumptions on
the input

– Do not need to sort the whole array, then pick i-th
element

– Counting/Radix/Bucket sort assume certain inputs

32

