
COT 6405 Introduction to Theory of 
Algorithms

Topic 11. Order Statistics 
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Order statistic

• The i-th order statistic in a set of n elements is 
the i-th smallest element

– The minimum is thus the 1st order statistic 

– The maximum is the n-th order statistic

– The median is the n/2 order statistic

• If n is even, we have 2 medians: lower median n/2 and 
upper median n/2+1

• By our convention, “median” normally refers to the 
lower median
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How to calculate

• How can we calculate order statistics?

• What is the running time?

– Simple method: Sort first, e.g., Heapsort O(n lg n)

– then return the i-th element
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Find the minimum

• How many comparisons are needed to find 
the minimum element in a set?  Or the 
maximum?

MINIMUM(A)

min=A[1]

for i=2 to A.length

if min > A[i]

min = A[i]

return min
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Find both the minimum & the 
maximum

• We can find the minimum with n-1 
comparisons

• We can find  the maximum with n-1 
comparisons

• So we can find both the minimum and the 
maximum with 2(n-1) comparisons
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Can we reduce the cost?

• Can we find the minimum and maximum with 
less than twice the cost, 2(n-1) ?

• Yes: walk through elements by pairs

– Compare each element in pair to the other

– Compare the larger one to maximum, the smaller 
one to minimum

• Total cost: 3 comparisons per 2 elements = 
O(3n/2)
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Finding order statistics: 
The Selection Problem

• A more interesting problem is the selection 
problem

– finding the i-th smallest element of a set 

• A naïve way is to sort the set 

– Running time takes O(nlgn)

• We will study a practical randomized algorithm 
with O(n) expected running time

• We will then study an algorithm with O(n) worst-case 
running time
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Randomized Selection

• Key idea: use partition() from Quicksort

– But, only need to examine one subarray

– This savings shows up in running time: O(n)

• We will again use a randomized partition  

q = RANDOMIZED-PARTITION(A, p, r)

RANDOMIZED-PARTITION(A, p, r)

i ←RANDOM(p, r)

exchange A[r] ↔ A[i ]

return PARTITION(A, p, r)

qp r
8



Randomized Selection

RandomizedSelect(A, p, r, i)

if (p == r) then return A[p];

q = RandomizedPartition(A, p, r)

k = q - p + 1;

if (i == k) then return A[q];  

if (i < k) then

return RandomizedSelect(A, p, q-1, ?);

else

return RandomizedSelect(A,q+1,r, ?? );

k
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Randomized Selection

RandomizedSelect(A, p, r, i)

if (p == r) then return A[p];

q = RandomizedPartition(A, p, r)

k = q - p + 1;

if (i == k) then return A[q];  

if (i < k) then

return RandomizedSelect(A, p, q-1, i);

else

return RandomizedSelect(A,q+1,r, i-k);

k
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Average case analysis

• We can upper-bound the  time needed for the 
recursive call by the time needed for the 
recursive call on the largest possible input

• In other words, to obtain an upper bound, we 
assume that the i-th element is always on the 
side of the partition with the greater number 
of elements
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Analyzing Randomized-Select()

• Worst case: partition always 0:n-1

– T(n) ≤ T(n-1) + O(n) = O(n2)

– No better than sorting!

• “Best” case: suppose a 9:1 partition

– T(n) ≤ T(9n/10) + O(n) = O(n) (why?)

– Master Theorem, case 3

– Better than sorting!
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Average case analysis (cont’d)

• We have n ways to partition, 1/n to choose k
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Average case analysis (cont’d)

• If n is even, T( 𝑛/2 ) up to T(n-1) appears exactly 
twice.

– E.g., n = 4,  T(n) ≤ 1/4(T(max(0, 3)) + T(max(1, 2)) + 
T(max(2, 1)) + T(max(3, 0) ) =2/4(T(3)+T(2))

• If n is odd, all these terms appear twice and T( 𝑛/2 )  
appears once

– E.g., n = 5,  T(n) ≤ 1/5(T(max(0, 4)) + T(max(1, 3)) + 
T(max(2, 2)) + T(max(3, 1)) + T(max(4, 0)) ) 
=2/5(T(4)+T(3))+1/5(T(2)) < 2/5(T(4)+T(3)+T(2)) 
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Average case analysis (cont’d)
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Average case analysis (cont’d)
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Average case analysis (cont’d)
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Average case analysis (cont’d)

• Use substitution method: Assume T(k)  ck, 
for sufficiently large c
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Average case analysis (cont’d)
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Average case analysis (cont’d)
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Worst-Case Linear-Time Selection

• Randomized selection algorithm works well in 
practice

• We now examine a selection algorithm whose 
running time is O(n) in the worst case.
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Worst-Case Linear-Time Selection

• The worst-case happens when a 0:n-1 split is 
generated. Thus, to achieve O(n) running time,  
we guarantee a good split upon partitioning 
the array.

• Basic idea: 

– Generate a good partitioning element
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Selection algorithm
1. Divide n elements into groups of 5

2. Find median of each group (How?  How long?)

3. Use Select() recursively to find median x of the n/5
medians

4. Partition the n elements around x.  Let k = rank(x)

5. if (i == k) then return x

if (i < k) then

use Select() recursively to find i-th smallest 
element in the low side of the partition

else

(i > k) use Select() recursively to find (i-k)-th
smallest element in the high side of the partition
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Example
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Running time analysis

• At least half of the 𝑛/5 groups contribute at 
least 3 elements  that are greater than x,

– except for the one group that has fewer than 5 
elements, and the one group containing x itself
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Running time analysis (Cont’d)

• The number of elements greater than x is at 
least

3(
1

2

𝑛

5
-2) ≥

3𝑛

10
- 6

• Similarly, at least 
3𝑛

10
- 6 elements are less than 

x. Thus, in the worst case, step 5 calls SELECT 

recursively on at most 
7𝑛

10
+ 6 elements.
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Running time analysis (cont’d)

• Step 1 takes O(n) time

• Step 2 consists of O(n) calls of insertion sort on sets of size 
O(1)

• Step 3 takes time T( 𝑛/5 )

• Step 4 takes O(n) time

• Step 5 takes time at most T(7n/10 + 6)
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Running time analysis (cont’d)

• We can therefore obtain the recurrence

• T(n) ≤ T( 𝑛/5 ) + T(7n/10 + 6) + O(n)

• Assume T(k) ≤ ck for k < n,  use the 
substitution method

• T(n) ≤ c 𝑛/5 + c(7n/10 + 6) + an

≤ cn/5 + c + 7cn/10 + 6c + an

= 9cn/10 + 7c +an

= cn + (-cn/10 + 7c + an)
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Running time analysis (cont’d)

• T(n) ≤ cn + (-cn/10 + 7c + an)

• Which is at most cn if

– -cn/10 + 7c + an ≤ 0

– c ≥ 10𝑎(𝑛/(𝑛 − 70)) when n > 70
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Linear-Time Median Selection

• Given a “black box” O(n) median algorithm, 
what can we do?

– i-th order statistic: 

• Find median x

• Partition input around x

• if (i  (n+1)/2) recursively find i-th element of first half

• else find (i - (n+1)/2)-th element in second half

• T(n) = T(n/2) + O(n) = O(n) (why?)
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Worst-case quicksort

• Worst-case O(n lg n) quicksort

– Find median x and partition around it

– Recursively quicksort two halves

– T(n) = 2T(n/2) + O(n) = O(n lg n)
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Summary

• Selection() does not require assumptions on 
the input

– Do not need to sort the whole array, then pick i-th
element

– Counting/Radix/Bucket sort assume certain inputs
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